Skip to main content

Publications

For up-to-date lists, please see
https://www.scholars.northwestern.edu/en/persons/scott-a-barnett/publications/
and
https://scholar.google.com/citations?hl=en&user=3VGvLrEAAAAJ&view_op=list_works&sortby=pubdate (but ignore the orthopedic research, that’s a different PI!)

Last updated April 1, 2024

(Presentation lists under the publication lists)

Publications

  1. Y. Zhang, S.A. Horlick, E. Dogdibegovic and S.A. Barnett, “Life Testing and Redox Cycling of Ni- and Ru-Doped Strontium Iron Titanate Exsolution Fuel Electrodes in Electrolyte-Supported Solid Oxide Cells,”ECS Transactions 111 (2023) 1917. https://doi.org/10.1149/11106.1917ecst.
  2. X. Yu, R. Scipioni, Y.B. Xu, J. Wu, V.P. Dravid and S.A. Barnett, “Beneficial Effects of La0.5Sr0.5CoO3 Coatings on Thin‐Film LiMn2O4 Cathodes for Lithium Ion Batteries,”Advanced Sustainable Systems (2023) https://doi.org/10.1002/adsu.202300137.
  3. T.A. Schmauss and S.A. Barnett, “Atomic layer deposition for surface area determination of solid oxide electrodes,”Journal of Materials Chemistry A 11 (2023) 3695-3702. https://doi.org/10.1039/D2TA09060K.
  4. J.M. Reinke, T.A. Schmauss, Y. Zhang, D. Cox and S.A. Barnett, “Phase Stability of SrTi1-XFexO3- δ Under Solid Oxide Cell Fuel-Electrode Conditions: Implications for Related Exsolution Electrode Materials,”ECS Transactions 111 (2023) 475. https://doi.org/10.1149/11106.0475ecst.
  5. D. Neagu, J.T.S. Irvine, J. Wang, B. Yildiz, A.K. Opitz, J. Fleig, Y. Wang, J. Liu, L. Shen, F. Ciucci, B.A. Rosen, Y. Xiao, K. Xie, G. Yang, Z. Shao, Y. Zhang, J. Reinke, T.A. Schmauss, S.A. Barnett, R. Maring, V. Kyriakou, U. Mushtaq, M.N. Tsampas, Y. Kim, R. O’hayre, A.J. Carrillo, T. Ruh, L. Lindenthal, F. Schrenk, C. Rameshan, E.I. Papaioannou, K. Kousi, I.S. Metcalfe, X. Xu and G. Liu, “Roadmap on exsolution for energy applications,”Journal of Physics: Energy 5 (2023) https://doi.org/10.1088/2515-7655/acd146.
  6. J. Grimes, Y. Zhang, D. Cox and S.A. Barnett, “Enhancement of Ni-YSZ Fuel Electrode Performance Via Pressurization and GDC Infiltration,”ECS Transactions 111 (2023) 51. https://doi.org/10.1149/11106.0051ecst.
  7. S. Ganti-Agrawal, D.M. Cox and S.A. Barnett, “Improving Gas Diffusion in Solid Oxide Cells Through Laser-Ablated Electrode Supports,”ECS Transactions 111 (2023) https://doi.org/10.1149/11106.0915ecst.
  8. D.M. Cox and S.A. Barnett, “A Method for Time-Resolved Characterization of Polarization-Induced Solid Oxide Cell Microstructure Evolution,”Journal of the Electrochemical Society 170 (2023) https://doi.org/10.1149/1945-7111/acbb30.
  9. D. Cox and S.A. Barnett, “Microstructural Changes in Ni-YSZ Electrodes Operated in Fuel Cell and Electrolysis Modes: Effect of Gas Diffusion Limitations,”ECS Transactions 111 (2023) https://doi.org/11106.1907ecst.
  10. Q. Zhang, S. Barnett and P. Voorhees, “Migration of inclusions in a matrix due to a spatially varying interface energy,”Scripta Materialia 206 (2022) https://doi.org/10.1016/j.scriptamat.2021.114235.
  11. T. Yang, S.L. Kollasch, J. Grimes, A. Xue and S.A. Barnett, “(La0.8Sr0.2)0.98MnO3-δ-Zr0.92Y0.16O2-δ:PrOx for oxygen electrode supported solid oxide cells,”Applied Catalysis B: Environmental 306 (2022) https://doi.org/10.1016/j.apcatb.2022.121114.
  12. J. Grimes, J. Hong and S.A. Barnett, “Effect of Gd-doped ceria infiltration into Ni-YSZ on reversible solid oxide cell operation,”Journal of Power Sources 551 (2022) https://doi.org/10.1016/j.jpowsour.2022.232189.
  13. A. Donazzi, T.A. Schmauss and S.A. Barnett, “Catalytic and electrocatalytic performance of Sr(Ti0.3Fe0.7Ru0.07)O3-δ for applications in solid oxide fuel cells supplied with ethanol steam reforming mixtures,”Journal of Power Sources 551 (2022) https://doi.org/10.1016/j.jpowsour.2022.232215.
  14. S.-L. Zhang, H. Wang, T. Yang, M.Y. Lu and S.A. Barnett, “Characteristics of Oxygen Electrode Supported Reversible Solid Oxide Cells,”Journal of the Electrochemical Society (2021) https://doi.org/10.1149/1945-7111/abfa58.
  15. Q. Zhang, Q.-Y. Liu, B.-K. Park, S. Barnett and P. Voorhees, “The oxygen partial pressure in solid oxide electrolysis cells with multilayer electrolytes,”Acta Materialia 213 (2021) https://doi.org/10.1016/j.actamat.2021.116928.
  16. T.A. Schmauss and S.A. Barnett, “Viability of Vehicles Utilizing On-Board CO2 Capture,”ACS Energy Letters (2021) 3180-3184. https://doi.org/10.1021/acsenergylett.1c01426.
  17. B.-K. Park, D. Cox and S.A. Barnett, “Effect of Nanoscale Ce0.8Gd0.2O2−δ Infiltrant and Steam Content on Ni–(Y2O3)0.08(ZrO2)0.92 Fuel Electrode Degradation during High-Temperature Electrolysis,”Nano Letters (2021) https://doi.org/10.1021/acs.nanolett.1c02937.
  18. E. Moazzen, R. Scipioni, M. Ma and S. Barnett, “Interpretation and Modelling of the Electrochemical Impedance of LiFePO4/Li4Ti5O12 Batteries,”Journal of the Electrochemical Society 168 (2021) https://doi.org/10.1149/1945-7111/abf9c1.
  19. N.S. Luu, J.-M. Lim, C.G. Torres-Castanedo, K.-Y. Park, E. Moazzen, K. He, P.E. Meza, W. Li, J.R. Downing, X. Hu, V.P. Dravid, S.A. Barnett, M.J. Bedzyk and M.C. Hersam, “Elucidating and Mitigating High-Voltage Interfacial Chemomechanical Degradation of Nickel-Rich Lithium-Ion Battery Cathodes via Conformal Graphene Coating,”ACS Applied Energy Materials (2021) https://doi.org/10.1021/acsaem.1c01995.
  20. J.J. Grimes and S.A. Barnett, “Effect of Pressurization on Solid Oxide Cell Oxygen Electrodes: the Role of PrOx Nanoparticle Infiltration,”Journal of the Electrochemical Society (2021) https://doi.org/10.1149/1945-7111/ac1faf.
  21. V. Goel, D. Cox, S.A. Barnett and K. Thornton, “Simulation of the Electrochemical Impedance in a Three-Dimensional, Complex Microstructure of Solid Oxide Fuel Cell Cathode and Its Application in the Microstructure Characterization,”Frontiers in Chemistry 9 (2021) https://doi.org/10.3389/fchem.2021.627699.
  22. S. Zhang, H. Wang, T. Yang, M.Y. Lu, C. Li, C. Li and S. Barnett, “Advanced Oxygen-Electrode-Supported Solid Oxide Electrochemical Cells with Sr(Ti,Fe)O3-δ-based Fuel Electrodes for Electricity Generation and Hydrogen Production,”Journal of Materials Chemistry A 8 (2020) 25867–25879. https://doi.org/10.1039/d0ta06678h.
  23. Q. Zhang, B.-K. Park, S. Barnett and P. Voorhees, “On the role of the zirconia/ceria interface in the degradation of solid oxide electrolysis cells,”Applied Physics Letters 117 (2020) https://doi.org/10.1063/5.0016478.
  24. H.-C. Yu, S.B. Adler, S.A. Barnett and K. Thornton, “Simulation of the diffusional impedance and application to the characterization of electrodes with complex microstructures,”Electrochimica Acta 354 (2020) https://doi.org/10.1016/j.electacta.2020.136534.
  25. R. Scipioni, D. Isheim and S.A. Barnett, “Revealing the complex layered-mosaic structure of the cathode electrolyte interphase in Li-ion batteries,”Applied Materials Today 20 (2020) https://doi.org/10.1016/j.apmt.2020.100748.
  26. B.-K. Park, R. Scipioni, Q. Zhang, D. Cox, P.W. Voorhees and S.A. Barnett, “Tuning electrochemical and transport processes to achieve extreme performance and efficiency in solid oxide cells,”Journal of Materials Chemistry A (2020) https://doi.org/10.1039/d0ta04555a.
  27. B.-K. Park, R. Scipioni, D. Cox and S.A. Barnett, “Enhancement of Ni–(Y2O3)0.08(ZrO2)0.92 fuel electrode performance by infiltration of Ce0.8Gd0.2O2−δ nanoparticles,”Journal of Materials Chemistry A 8 (2020) 4099-4106. https://doi.org/10.1039/c9ta12316d.
  28. B.-K. Park and S.A. Barnett, “Boosting solid oxide fuel cell performance via electrolyte thickness reduction and cathode infiltration,”Journal of Materials Chemistry A (2020) https://doi.org/10.1039/d0ta04280c.
  29. M.Y. Lu, T. Yang, R. Scipioni, Y.A. Chart, A. Furlong and S.A. Barnett, “Sm0.5Sr0.5CoO3−δ Surface Modification of La0.6Sr0.4Co0.2Fe0.8O3−δ-Ce0.9Gd0.12−δ Composite Oxygen Electrodes for Solid Oxide Electrochemical Cells,”Journal of the Electrochemical Society 167 (2020) https://doi.org/10.1149/1945-7111/abca6f.
  30. J. Ascolani-Yael, A. Montenegro-Hernández, D. Garcés, Q. Liu, H. Wang, K. Yakal-Kremski, S. Barnett and L. Mogni, “The oxygen reduction reaction in solid oxide fuel cells: from kinetic parameters measurements to electrode design,”Journal of Physics: Energy 2 (2020) https://doi.org/10.1088/2515-7655/abb4ec.
  31. T. Zhu, H. Troiani, L.V. Mogni, M. Santaya, M. Han and S.A. Barnett, “Exsolution and electrochemistry in perovskite solid oxide fuel cell anodes: Role of stoichiometry in Sr(Ti,Fe,Ni)O3,”Journal of Power Sources 439 (2019) https://doi.org/10.1016/j.jpowsour.2019.227077.
  32. S.L. Zhang, H.Q. Wang, M.Y. Lu, C.X. Li, C.J. Li and S.A. Barnett, “Electrochemical performance and stability of SrTi0.3Fe0.6Co0.1O3-delta infiltrated La0.8Sr0.2MnO3-Zr0.92Y0.16O2-delta oxygen electrodes for intermediate-temperature solid oxide electrochemical cells,”Journal of Power Sources 426 (2019) 233-241. https://doi.org/10.1016/j.jpowsour.2019.04.044.
  33. S.-L. Zhang, H. Wang, C.-X. Li, C.-J. Li and S.A. Barnett, “Effect of SrTi0.3Fe0.6Co0.1O3 Infiltration on the Performance of LSM-YSZ Cathode Supported Solid Oxide Fuel Cells with Sr(Ti,Fe)O3 Anodes,”ECS Transactions 91 (2019) 
  34. S.-L. Zhang, D. Cox, H. Yang, B.-K. Park, C.-X. Li, C.-J. Li and S.A. Barnett, “High stability SrTi1−xFexO3−δ electrodes for oxygen reduction and oxygen evolution reactions,”Journal of Materials Chemistry A 7 (2019) 21447-21458. https://doi.org/10.1039/c9ta07548h.
  35. T.A. Schmauss, J.G. Railsback, M.Y. Lu, K.Y. Zhao and S.A. Barnett, “ZrO2 atomic layer deposition into Sr0.5Sm0.5CoO3−δ–Ce0.9Gd0.1O2−δ solid oxide fuel cell cathodes: mechanisms of stability enhancement,”Journal of Materials Chemistry A (2019) https://doi.org/10.1039/c9ta09214e.
  36. J. Railsback, S.H. Choi and S.A. Barnett, “Effectiveness of dense Gd-doped ceria barrier layers for (La,Sr)(Co,Fe)O-3 cathodes on Yttria-stabilized zirconia electrolytes,”Solid State Ionics 335 (2019) 74-81. https://doi.org/10.1016/j.ssi.2019.02.020.
  37. B.-K. Park, Q. Zhang, P.W. Voorhees and S.A. Barnett, “Conditions for stable operation of solid oxide electrolysis cells: oxygen electrode effects,”Energy & Environmental Science 12 (2019) 3053-3062. https://doi.org/10.1039/c9ee01664c.
  38. M.Y. Lu, R. Scipioni, B.-K. Park, T. Yang, Y.A. Chart and S.A. Barnett, “Mechanisms of PrOx performance enhancement of oxygen electrodes for low and intermediate temperature solid oxide fuel cells,”Materials Today Energy (2019) https://doi.org/10.1016/j.mtener.2019.100362.
  39. M.Y. Lu, J.G. Railsback, H.Q. Wang, Q.Y. Liu, Y.A. Chart, S.L. Zhang and S.A. Barnett, “Stable high current density operation of La0.6Sr0.4Co0.2Fe0.8O3-delta oxygen electrodes,”Journal of Materials Chemistry A 7 (2019) 13531-13539. https://doi.org/10.1039/c9ta04020j.
  40. Q. Liu, Q. Zhang, P.W. Voorhees and S.A. Barnett, “Effect of direct-current operation on the electrochemical performance and structural evolution of Ni-YSZ electrodes,”Journal of Physics: Energy 2 (2019) https://doi.org/10.1088/2515-7655/ab59a6.
  41. S.A. Barnett, B.-K. Park and R. Scipioni, “Effect of Infiltration on Performance of Ni-YSZ Fuel Electrodes,”ECS Transactions 91 (2019) 1791-1797. https://doi.org/10.1149/09101.1791ecst.
  42. J. Ascolani-Yael, A. Montenegro-Hernández, Q. Liu, S.A. Barnett and L. Mogni, “Study of La0.6Sr0.4Co1-xFexO3-δ (x = 0.2 & 0.8) Electrochemical Response as SOFC Cathodes and Its Relation with Microstructure,”Journal of the Electrochemical Society 166 (2019) F1301-F1307. https://doi.org/10.1149/2.0281916jes.
  43. Justin Railsback, Scott A Barnett, “Performance and stability of La2NiO4-infiltrated La0.9Sr0.1Ga0.8Mg0.2O3 oxygen electrodes during current switched life testing,” Journal of Power Sources 395 (2018) 1-7.
  44. D. Garcés, H. Wang, S.A. Barnett, A.G. Leyva, F.R. Napolitano, R.O. Fuentes, H.E.
    Troiani and L.V. Mogni, “An insight into the electrochemical performance of
    La0.5−xPrxBa0.5CoO3−δ as cathodes for solid oxide fuel cells: study of the O2-
    reduction reaction,” Journal of Materials Chemistry A 6 (2018) 16699 – 16709
  45. Q. Liu, H. Wang, D. Kennouche, C. Riscoe, D. Butts and S.A. Barnett, “Effect of
    Reversing-Current Operation on the Structure and Electrochemical Performance
    Evolution of Ni-YSZ Fuel Electrodes,” Journal of The Electrochemical Society 165
    (2018) F870-F875
  46. Zhu, T., Troiani, H. E., Mogni, L. V., Han, M. & Barnett, S. A. Ni-Substituted
    Sr(Ti,Fe)O 3 SOFC Anodes: Achieving High Performance via Metal Alloy Nanoparticle
    Exsolution. Joule, doi:10.1016/j.joule.2018.02.006 (2018).
  47. Zhang, S.-L., Wang, H., Lu, M. Y., Zhang, A.-P., Mogni, L. V., Liu, Q., Li, C.-X., Li, C.-
    J. & Barnett, S. A. Cobalt-substituted SrTi0.3Fe0.7O3−δ: a stable high-performance
    oxygen electrode material for intermediate-temperature solid oxide electrochemical cells.
    Energy & Environmental Science, doi:10.1039/c8ee00449h (2018).
  48. Yu, X., Chen, X., Buchholz, D. B., Barnett, S. A., Li, Q., Wu, J., Fenter, P., Bedzyk, M.
    J. & Dravid, V. P. Pulsed Laser Deposition and Characterization of Hetero-epitaxial
    LiMn2O4/La0.5Sr0.5CoO3 Bilayer Thin Films as Model Lithium Ion Battery Cathodes.
    ACS Applied Nano Materials, doi:10.1021/acsanm.7b00133 (2018).
  49. Wang, H., Sumi, H. & Barnett, S. A. Effect of high-temperature ageing on
    (La,Sr)(Co,Fe)O 3-δ cathodes in microtubular solid oxide fuel cells. Solid State Ionics
    323, 85-91, doi:10.1016/j.ssi.2018.05.019 (2018).
  50. Wang, H. & Barnett, S. A. Degradation Mechanisms of Porous
    La0.6Sr0.4Co0.2Fe0.8O3-δ Solid Oxide Fuel Cell Cathodes. Journal of The
    Electrochemical Society 165, F564-F570, doi:10.1149/2.1211807jes (2018).
  51. Glaser, R., Zhu, T., Troiani, H. E., Caneiro, A., Mogni, L. V. & Barnett, S. Enhanced
    electrochemical response of Sr(Ti0.3Fe0.7Ru0.07)O3-δ anodes by exsolved Ru-Fe
    nanoparticles. Journal of Materials Chemistry A 6, 5193 – 5201, doi:10.1039/c7ta10762e
    (2018).
  52. Railsback, J. G., Wang, H., Liu, Q., Lu, M. Y. & Barnett, S. A. Degradation of
    La0.6Sr0.4Fe0.8Co0.2O3-δ Oxygen Electrodes on Ce0.9Gd0.1O3-δ Electrolytes during
    Reversing Current Operation. Journal of The Electrochemical Society 164, F3083-F3090,
    doi:10.1149/2.0111710jes (2017).
  53. Sumi, H., Yamaguchi, T., Shimada, H., Hamamoto, K., Suzuki, T. & Barnett, S. A.
    Direct Butane Utilization on Ni-(Y2O3)0.08(ZrO2)0.92-(Ce0.9Gd0.1)O1.95 Composite
    Anode-Supported Microtubular Solid Oxide Fuel Cells. Electrocatalysis 8, 288-293,
    doi:10.1007/s12678-017-0369-7 (2017).
  54. Nenning, A., Volgger, L., Miller, E., Mogni, L. V., Barnett, S. & Fleig, J. r. The
    Electrochemical Properties of Sr(Ti,Fe)O3-δ for Anodes in Solid Oxide Fuel Cells.
    Journal of The Electrochemical Society 164, F364-F371, doi:10.1149/2.1271704jes
    (2017).
  55. Liu, Z., Han, K., Chen-Wiegart, Y.-c. K., Wang, J., Kung, H. H., Wang, J., Barnett, S. A.
    & Faber, K. T. X-ray nanotomography analysis of the microstructural evolution of
    LiMn2O4 electrodes. Journal of Power Sources 360, 460-469,
    doi:10.1016/j.jpowsour.2017.06.027 (2017).
  56. Gao, Z., Wang, H., Miller, E. C., Liu, Q., Senn, D. & Barnett, S. A. Tape Casting of
    High-Performance Low-Temperature Solid Oxide Cells with Thin
    La0.8Sr0.2Ga0.8Mg0.2O3-delta Electrolytes and Impregnated Nano Anodes. ACS Appl
    Mater Interfaces, doi:10.1021/acsami.6b15224 (2017).
  57. Duffy, P. K., Beal, R. A., Layton, C. E., Barnett, S. A. & Mason, T. O. Solubility limits
    and LaGaO3 compatibility in the LaO1.5-GaO1.5-NiO ternary system. Journal of the
    American Ceramic Society 00, 1-7, doi:10.1111/jace.14702 (2017).
  58. Zenou, V. Y., Fowler, D. E., Gautier, R., Barnett, S. A., Poeppelmeier, K. R. & Marks, L.
    D. Redox and phase behavior of Pd-substituted (La,Sr)CrO3 perovskite solid oxide fuel
    cell anodes. Solid State Ionics 296, 90-105, doi:10.1016/j.ssi.2016.09.006 (2016).
  59. Liu, Z., Verhallen, T. W., Singh, D. P., Wang, H., Wagemaker, M. & Barnett, S. Relating
    the 3D electrode morphology to Li-ion battery performance; a case for LiFePO4. Journal
    of Power Sources 324, 358-367, doi:10.1016/j.jpowsour.2016.05.097 (2016).
  60. Gorai, P., Gao, D., Ortiz, B., Miller, S., Barnett, S. A., Mason, T., Lv, Q., Stevanović, V.
    & Toberer, E. S. TE Design Lab: A virtual laboratory for thermoelectric material design.
    Computational Materials Science 112, 368-376, doi:10.1016/j.commatsci.2015.11.006
    (2016).
  61. Zhu, T., Fowler, D. E., Poeppelmeier, K. R., Han, M. & Barnett, S. A. Hydrogen
    Oxidation Mechanisms on Perovskite Solid Oxide Fuel Cell Anodes. Journal of The
    Electrochemical Society 163, F952-F961, doi:10.1149/2.1321608jes (2016).
  62. Wang, H., Yakal-Kremski, K. J., Yeh, T., Rupp, G. M., Limbeck, A., Fleig, J. & Barnett,
    S. A. Mechanisms of Performance Degradation of (La,Sr)(Co,Fe)O3-δSolid Oxide Fuel
    Cell Cathodes. Journal of The Electrochemical Society 163, F581-F585,
    doi:10.1149/2.0031607jes (2016).
  63. Scipioni, R., Jørgensen, P. S., Ngo, D.-T., Simonsen, S. B., Liu, Z., Yakal-Kremski, K. J.,
    Wang, H., Hjelm, J., Norby, P., Barnett, S. A. & Jensen, S. H. Electron microscopy
    investigations of changes in morphology and conductivity of LiFePO4/C electrodes.
    Journal of Power Sources 307, 259-269, doi:10.1016/j.jpowsour.2015.12.119 (2016).
  64. Liu, Z., Chen-Wiegart, Y. C., Wang, J., Barnett, S. A. & Faber, K. T. Three-Phase 3D
    Reconstruction of a LiCoO2 Cathode via FIB-SEM Tomography. Microsc Microanal 22,
    140-148, doi:10.1017/S1431927615015640 (2016).
  65. Kennouche, D., Chen-Wiegart, Y.-c. K., Yakal-Kremski, K. J., Wang, J., Gibbs, J. W.,
    Voorhees, P. W. & Barnett, S. A. Observing the microstructural evolution of Ni-Yttriastabilized
    zirconia solid oxide fuel cell anodes. Acta Materialia 103, 204-210,
    doi:10.1016/j.actamat.2015.09.055 (2016).
  66. Kennouche, D., Chen-Wiegart, Y.-c. K., Riscoe, C., Wang, J. & Barnett, S. A. Combined
    electrochemical and X-ray tomography study of the high temperature evolution of Nickel
    – Yttria Stabilized Zirconia solid oxide fuel cell anodes. Journal of Power Sources 307,
    604-612, doi:10.1016/j.jpowsour.2015.12.126 (2016).
  67. Gao, Z., Mogni, L. V., Miller, E. C., Railsback, J. G. & Barnett, S. A Perspective On
    Low-Temperature Solid Oxide Fuel Cells. Energy & Environmental Science,
    doi:10.1039/C5EE03858H (2016).
  68. Duffy, P. K., Barnett, S. A. & Mason, T. O. A Hemispherical Electrolyte Probe for
    Screening of Solid Oxide Fuel Cell Cathode Materials. Journal of The Electrochemical
    Society 163, F802-F807, doi:10.1149/2.0341608jes (2016).
  69. Call, A. V., Railsback, J. G., Wang, H. & Barnett, S. A. Degradation of nano-scale
    cathodes: a new paradigm for selecting low-temperature solid oxide cell materials.
    Physical chemistry chemical physics : PCCP 18, 13216-13222, doi:10.1039/c6cp02590k
    (2016).
  70.  Yan, J., Gorai, P., Ortiz, B., Miller, S., Barnett, S. A., Mason, T., Stevanović, V. &
    Toberer, E. S. Material descriptors for predicting thermoelectric performance. Energy
    Environ. Sci. 8, 983-994, doi:10.1039/c4ee03157a (2015).
  71. Wendel, C. H., Gao, Z., Barnett, S. A. & Braun, R. J. Modeling and experimental
    performance of an intermediate temperature reversible solid oxide cell for highefficiency,
    distributed-scale electrical energy storage. Journal of Power Sources 283,
    329-342, doi:10.1016/j.jpowsour.2015.02.113 (2015).
  72. Wang, H., Gao, Z. & Barnett, S. A. Anode-Supported Solid Oxide Fuel Cells Fabricated
    by Single Step Reduced-Temperature Co-Firing. Journal of The Electrochemical Society
    163, F196-F201, doi:10.1149/2.03716023jes (2015).
  73. Sumi, H., Kennouche, D., Yakal-Kremski, K., Suzuki, T., Barnett, S. A., Miller, D. J.,
    Yamaguchi, T., Hamamoto, K. & Fujishiro, Y. Electrochemical and microstructural
    properties of Ni–(Y2O3)0.08(ZrO2)0.92–(Ce0.9Gd0.1)O1.95 anode-supported
    microtubular solid oxide fuel cells. Solid State Ionics, doi:10.1016/j.ssi.2015.07.005
    (2015).
  74. Railsback, J. G., Gao, Z. & Barnett, S. A. Oxygen electrode characteristics of
    Pr2NiO4+δ-infiltrated porous (La0.9Sr0.1)(Ga0.8Mg0.2)O3–δ. Solid State Ionics 274,
    134-139, doi:10.1016/j.ssi.2015.03.030 (2015).
  75. Jensen, S. H., Graves, C., Mogensen, M., Wendel, C., Braun, R., Hughes, G., Gao, Z. &
    Barnett, S. A. Large-scale electricity storage utilizing reversible solid oxide cells
    combined with underground storage of CO2and CH4. Energy Environ. Sci. 8, 2471 –
    2479, doi:10.1039/c5ee01485a (2015).
  76. Hughes, G. A., Railsback, J. G., Yakal-Kremski, K. J., Butts, D. M. & Barnett, S. A.
    Degradation of (LaSr)MnO-ZrYO composite electrodes during reversing current
    operation. Faraday Discuss, doi:10.1039/c5fd00020c (2015).
  77. Gao, Z., Zenou, V., Kennouche, D., Marks, L. D. & Barnett, S. Characteristics of Solid
    Oxide Cells with Zirconia/Ceria Bi-Layer Electrolytes Fabricated Utilizing Reduced-
    Temperature Firing. J. Mater. Chem. A, doi:10.1039/c5ta01964h (2015).
  78. Fowler, D. E., Messner, A. C., Miller, E. C., Slone, B. W., Barnett, S. A. &
    Poeppelmeier, K. R. Decreasing the Polarization Resistance of (La,Sr)CrO3−δSolid
    Oxide Fuel Cell Anodes by Combined Fe and Ru Substitution. Chem Mater,
    150514130523002, doi:10.1021/acs.chemmater.5b00622 (2015).
  79. Jorgensen, P. S., Yakal-Kremski, K., Wilson, J., Bowen, J. R. & Barnett, S. On the
    accuracy of triple phase boundary lengths calculated from tomographic image data.
    Journal of Power Sources 261, 198-205, doi:Doi 10.1016/J.Jpowsour.2014.03.078
    (2014).
  80. Yakal-Kremski, K., Mogni, L. V., Montenegro-Hernandez, A., Caneiro, A. & Barnett, S.
    A. Determination of Electrode Oxygen Transport Kinetics Using Electrochemical
    Impedance Spectroscopy Combined with Three-Dimensional Microstructure
    Measurement: Application to Nd2NiO4+delta. Journal of the Electrochemical Society
    161, F1366-F1374, doi:Doi 10.1149/2.0521414jes (2014).
  81. Lu, Y., Kreller, C. R., Adler, S. B., Wilson, J. R., Barnett, S. A., Voorhees, P. W., Chen,
    H. Y. & Thornton, K. Performance Variability and Degradation in Porous La1-
    xSrxCoO3- Electrodes. Journal of the Electrochemical Society 161, F561-F568,
    doi:10.1149/2.101404jes (2014).
  82. Kennouche, D., Hong, J., Noh, H.-S., Son, J.-W. & Barnett, S. A. Three-dimensional
    microstructure of high-performance pulsed-laser deposited Ni–YSZ SOFC anodes.
    Physical Chemistry Chemical Physics, doi:10.1039/c4cp02251c (2014).
  83. Gao, Z., Miller, E. C. & Barnett, S. A. A High Power Density Intermediate-Temperature
    Solid Oxide Fuel Cell with Thin (La0.9Sr0.1)(0.98)(Ga0.8Mg0.2)O3-delta Electrolyte
    and Nano-Scale Anode. Advanced Functional Materials 24, 5703-5709, doi:Doi
    10.1002/Adfm.201400295 (2014).
  84. Gao, Z., Kennouche, D. & Barnett, S. A. Reduced-temperature firing of solid oxide fuel
    cells with zirconia/ceria bi-layer electrolytes. Journal of Power Sources 260, 259-263,
    doi:10.1016/j.jpowsour.2014.03.025 (2014).
  85. Gao, Z. & Barnett, S. A. Effects of Reduced Firing Temperature on Anode-Supported
    Solid Oxide Fuel Cells. Journal of the Electrochemical Society 161, F600-F604,
    doi:10.1149/2.033405jes (2014).
  86. Fowler, D. E., Haag, J., Boland, C., Bierschenk, D. M., Barnett, S. A. & Poeppelmeier,
    K. R. Stable, Low Polarization Resistance Solid Oxide Fuel Cell Anodes: La1-xSrxCr1-
    xFexO3-δ(x = 0.2 – 0.67). Chem Mater, 140428025107009, doi:10.1021/cm500423n
    (2014).
  87. Chen-Wiegart, Y.-c. K., DeMike, Ross, Erdonmez, Can, Thornton, Katsuyo, Barnett,
    Scott A., Wang, Jun Tortuosity characterization of 3D microstructure at nano-scale for
    energy storage and conversion materials. Journal of Power Sources 249, 349-356,
    doi:10.1016/j.jpowsour.2013.10.026 (2014).
  88. Yakal-Kremski, K., Cronin, J. S., Chen, Y.-C. K., Wang, J. & Barnett, S. A. Studies of
    Solid Oxide Fuel Cell Electrode Evolution Using 3D Tomography Fuel Cells (2013).
    209. Miller, E. C., Gao, Z. & Barnett, S. A. Fabrication of Solid Oxide Fuel Cells with a Thin
    (La0.9Sr0.1)0.98(Ga0.8Mg0.2)O3-δ Electrolyte on a Sr0.8La0.2TiO3 Support. Fuel
    Cells (2013).
  89. Liu, Z., Cronin, J. S., Chen-Wiegart, Y. C. K., Wilson, J. R., Yakal-Kremski, K. J.,
    Wang, J., Faber, K. T., Barnett, S. A. Three-dimensional morphological measurements of
    LiCoO2 and LiCoO2/Li (Ni1/3Mn1/3Co1/3)O-2 lithium-ion battery cathodes. Journal of
    Power Sources 227, 267-274, doi:Doi 10.1016/J.Jpowsour.2012.11.043 (2013).
  90. Kennouche, D., Chen-Wiegart, Y. c. K., Cronin, J. S., Wang, J. & Barnett, S. A. Three-
    Dimensional Microstructural Evolution of Ni- Yttria-Stabilized Zirconia Solid Oxide
    Fuel Cell Anodes At Elevated Temperatures. Journal of the Electrochemical Society 160,
    F1293-F1304, doi:10.1149/2.084311jes (2013).
  91. Hughes, G. A., Yakal-Kremski, K. & Barnett, S. A. Life testing of LSM-YSZ composite
    electrodes under reversing-current operation. Physical chemistry chemical physics :
    PCCP 15, 17257-17262, doi:10.1039/c3cp52973h (2013).
  92. Cronin, J. S., Chen-Wiegart, Y. C. K., Wang, J. & Barnett, S. A. Three-dimensional
    reconstruction and analysis of an entire solid oxide fuel cell by full-field transmission Xray
    microscopy. Journal of Power Sources 233, 174-179, doi:Doi
    10.1016/J.Jpowsour.2013.01.060 (2013).
  93. Cho, S., Fowler, D. E., Miller, E. C., Cronin, J. S., Poeppelmeier, K. R., Barnett, S. A.,
    Fe-substituted SrTiO3−δ–Ce0.9Gd0.1O2 composite anodes for solid oxide fuel cells.
    Energy & Environmental Science, doi:10.1039/c3ee23791e (2013).
  94. Chen-Wiegart, Y.-c. K., Liu, Z., Faber, K. T., Barnett, S. A. & Wang, J. 3D analysis of a
    LiCoO2–Li(Ni1/3Mn1/3Co1/3)O2 Li-ion battery positive electrode using x-ray nanoLast
    updated 11/29/18
    tomography. Electrochemistry Communications 28, 127-130,
    doi:10.1016/j.elecom.2012.12.021 (2013).
  95. A.H. Wiedemann, G.M. Goldin, S.A. Barnett, H. Zhu and R.J. Kee, “Effects of threedimensional
    cathode microstructure on the performance of lithium-ion battery cathodes,”
    Electrochimica Acta 88, 580 – 588 (2013).
  96. Z. Zhan, D. Han, T. Wu, X. Ye, S. Wang, T. Wen, S. Cho and S.A. Barnett, “A solid
    oxide cell yielding high power density below 600 °C,” RSC Advances 2 (2012) 4075
  97. N.O. Shanti, D.M. Bierschenk, S.A. Barnett and K.T. Faber, “Direct lamination of solid
    oxide fuel cell anode support, anode, and electrolyte by sequential tape casting of
    thermoreversible gel slips,” Journal of Power Sources 212 (2012) 43-46
  98. J.D. Nicholas, L. Wang, A.V. Call and S.A. Barnett, “Use of the Simple Infiltrated
    Microstructure Polarization Loss Estimation (SIMPLE) model to describe the
    performance of nano-composite solid oxide fuel cell cathodes,” Phys Chem Chem Phys
    (2012) online.
  99. Y.-C. Karen Chen-Wiegart, J.S. Cronin, Q. Yuan, K.J. Yakal-Kremski, S.A. Barnett and
    J. Wang, “3D Non-destructive morphological analysis of a solid oxide fuel cell anode
    using full-field X-ray nano-tomography,” Journal of Power Sources 218 (2012) 348-351
  100. J.S. Cronin, K. Muangnapoh, Z. Patterson, K.J. Yakal-Kremski, V.P. Dravid and S.A.
    Barnett, “Effect of Firing Temperature on LSM-YSZ Composite Cathodes: A Combined
    Three-Dimensional Microstructure and Impedance Spectroscopy Study,” Journal of The
    Electrochemical Society 159 (2012) B385
  101. David M Bierschenk and Scott A Barnett, “Electrochemical Characteristics of
    La0.8Sr0.2Cr0.82Ru0.18O3-δ – Gd0.1Ce0.9O2 Solid Oxide Fuel Cell Anodes in H2-
    H2O-CO-CO2 Fuel Mixtures,” J. Power Sources, 201 (2012) 95-102.
  102. J. M. Haag, D. M. Bierschenk, K. R. Poeppelmeier, and S. A. Barnett, “Structural,
    Chemical, and Electrochemical Characteristics of LaSr2Fe2CrO9-δ-Based Solid Oxide
    Fuel Cell Anodes”, Solid State Ionics, 212 (2012) 1-5.
  103. Z. Zhan, D.M. Bierschenk, J.S. Cronin, S.A. Barnett, “A reduced temperature solid oxide
    fuel cell with nanostructured anodes,” Energy & Environmental Science 4 (2011) 944-
    951 (DOI: 10.1039/c1ee01982a)
  104. Megna Shah, S.A. Barnett, and P.W. Voorhees, Time-Dependent Performance Changes
    in LSCF-Infiltrated SOFC Cathodes: The Role of Nano-Particle Coarsening, Solid State
    Ionics, 187 (2011) 64-67.
  105. B.L. Stevens, C.A. Hoel, C. Swanborg, Y. Tang, C.L. Zhou, M. Grayson, K.R.
    Poeppelmeier and S.A. Barnett, “Dc Reactive Magnetron Sputtering, Annealing, and
    Characterization of CuAlO2 Thin Films,” Journal of Vacuum Science & Technology A 29
    (2011)
  106. David Matthew Bierschenk; Elizabeth Potter-Nelson; Cathleen Hoel; Yougui Liao;
    Laurence Marks; Kenneth R Poeppelmeier; Scott A Barnett, Pd-substituted (La,Sr)CrO3-
    Ce0.9Gd0.1O2 Solid Oxide Fuel Cell Anodes Exhibiting Regenerative Behavior, Journal
    of Power Sources, 196 (2011) 3089-3094.
  107. D.M. Bierschenk, J.R. Wilson and S.A. Barnett, “High Efficiency Electrical Energy
    Storage Using a Methane-Oxygen Solid Oxide Cell,” Energy & Environmental Science 4
    (2011) 944.
  108. J.S. Cronin, J.R. Wilson and S.A. Barnett, “Impact of Pore Microstructure Evolution on
    Polarization Resistance of Ni-Yttria-Stabilized Zirconia Fuel Cell Anodes,” Journal of
    Power Sources 196 (2011) 2640-2643
  109. James R. Wilson, J. Scott Cronin, Scott A. Barnett, “Linking The Microstructure,
    Performance, and Durability of Ni-YSZ Solid Oxide Fuel Cell Anodes Using Three-
    Dimensional FIB-SEM Imaging,” Scripta Materiala, 65, 67-72,
    doi:10.1016/j.scriptamat.2010.09.025 (2011)..
  110. James R. Wilson, J. Scott Cronin, Scott A. Barnett, Stephen J. Harris, Measurement Of
    Three-Dimensional Microstructure In A LiCoO2 Positive Electrode, J. Power Sources,
    196 (2011) 3443-3447.
  111. J.M. Haag, J.W. Richardson Jr., S.A. Barnett, and K.R. Poeppelmeier, Structural and
    Chemical Evolution of the SOFC Anode Lao.3Sr0.7Fe0.7Cr0.3O3-δ Upon Reduction and
    Oxidation: An In-Situ Neutron Diffraction Study”, Chemistry of Materials 22 (2010)
    3283-3289.
  112. Mingyang Gong; David Bierschenk; J. Haag; K. R Poeppelmeier; Scott A Barnett;
    Chunchuan Xu; John W Zondlo; Xingbo Liu, “Degradation of LaSr2Fe2CrO9-D SOFC
    anodes in phosphine-containing fuels,” J. Power Sources, 195 (2010) 4013-4021
  113. W. Kobsiriphat, B.D. Madsen, Y. Wang, M. Shah, L.D. Marks and S.A. Barnett, “Nickeland
    Ruthenium-Doped Lanthanum Chromite Anodes: Effects of Nanoscale Metal
    Precipitation on Solid Oxide Fuel Cell Performance,” Journal of the Electrochemical
    Society 157 (2010) B279-B284
  114. Nicholas, J. D. and Barnett, S. A., “Measurements and Modeling of Sm0.5Sr0.5CoO3–x –
    Ce0.9Gd0.1O1.95 SOFC Cathodes Produced Using Infiltrate Solution Additives,” Journal of
    the Electrochemical Society, (2010), 157, B536
  115. James R. Wilson, J. Scott Cronin; Anh Duong; Sherri Rukes; Hsun-Yi Chen; Katsuyo
    Thornton; Daniel Mumm; Scott A Barnett, Effect of Composition of (La0.8Sr0.2MnO3 –
    Y2O3-Stabilized ZrO2) Cathodes: Correlating Three-Dimensional Microstructure And
    Polarization Resistance, J. Power Sources 195 (2010) 1829.
  116. M.R. Pillai, Y. Lin, H. Zhu, R.J. Kee, and S.A. Barnett, Stability and Coking of Direct-
    Methane Solid Oxide Fuel Cells: Effect of CO2 and Air Additions, J. Power Sources 195
    (2010) 271 (10.1016/j.jpowsour.2009.05.032)
  117. Zhan, Z.; Kobsiriphat, W.; Wilson, J. R.; Pillai, M.; Kim, I.; Barnett, S. A., Syngas
    Production By Coelectrolysis of CO2/H2O: The Basis for a Renewable Energy Cycle.
    Energy & Fuels 2009, 23, 3089-3096.
  118. Kobsiriphat, W., Madsen, B.D., Wang, Y., Marks, L.D., and Barnett, S.A.,
    La0.8Sr0.2Cr1-xRuxO3 – Gd0.1Ce0.9O1.95 Solid Oxide Fuel Cell Anodes: Ru
    Precipitation And Electrochemical Performance. Solid State Ionics 180, 252-256 (2009).
  119. Wilson, J.R., Duon, A., Gameiro, M., Mumm, D., and Barnett, S.A., Quantitative Three-
    Dimensional Microstructure of Solid Oxide Fuel Cell Cathodes. Electrochemistry
    Communications 11, 1052-1056 (2009).
  120. Wilson, J. R., Gameiro, M., Mischaikow, K., Kalies, W., Voorhees, P. W., and Barnett,
    S. A., Three-Dimensional Analysis of Solid Oxide Fuel Cell Ni-YSZ Anode
    Interconnectivity. Microscopy and Microanalysis 15, 71-77 (2009).
  121. Shah, M., Nicholas, J.D., and Barnett, S.A., Prediction of Infiltrated Solid Oxide Fuel
    Cell Cathode Polarization Resistance Electrochemistry Communications 11, 2-5 (2009).
  122. Nicholas, Jason D. and Barnett, Scott A., Finite-Element Modeling of Idealized
    Infiltrated Composite Solid Oxide Fuel Cell Cathodes. Journal of the Electrochemical
    Society 156, B458-B464 (2009).
  123. Goldin, G.M., Zhu, H., Kee, R.J., Bierschenk, D., and Barnett, S.A., Multidimensional
    Flow, Thermal, and Chemical Behavior in SOFC Button Cells. J. Power Sources 187,
    123-135 (2009).
  124. Shah, M. and Barnett, S. A., Solid oxide fuel cell cathodes by infiltration of
    La0.6Sr0.4Co0.2Fe0.8O3 into Gd-Doped Ceria. Solid State Ionics 179, 2059-2064
    (2008).
  125. Stevens, B. L., Cohen, D. J., and Barnett, S. A., Structure and interdiffusion of epitaxial
    ZnO/ZnMgO nanolayered thin films. Journal of Vacuum Science & Technology A 26,
    1538-1541 (2008).
  126. Pillai, Manoj R., Kim, Ilwon, Bierschenk, David M., and Barnett, Scott A., Fuel-flexible
    operation of a solid oxide fuel cell with Sr0.8La0.2TiO3 support. Journal of Power
    Sources 185, 1086-1093 (2008).
  127. Lin, Y. B., Pillai, M. R., Bierschenk, D. M., Stevens, B. L., and Barnett, S. A., Methane
    partial oxidation using a (La0.6Sr0.4)(Ga0.8Mg0.05Co0.15)O3-delta membrane.
    Catalysis Letters 124, 1-6 (2008).
  128. Zhu, H. Y., Kee, R. J., Pillai, M. R., and Barnett, S. A., Modeling electrochemical partial
    oxidation of methane for cogeneration of electricity and syngas in solid-oxide fuel cells.
    Journal of Power Sources 183, 143-150 (2008).
  129. Wilson, J. R. and S. A. Barnett (2008). “Solid Oxide Fuel Cell Ni–YSZ Anodes: Effect
    of Composition on Microstructure and Performance.” Electrochemical and Solid-State
    Letters 11(10): B181-B185.
  130. Pillai, Manoj R., Jiang, Yi, Mansourian, Negar, Kim, Ilwon, Bierschenk, David M., Zhu,
    Huayang, Kee, Robert J., and Barnett, Scott A., Solid Oxide Fuel Cell with Oxide Anode-
    Side Support. Electrochemical and Solid-State Letters 11, B174-B177 (2008).
  131. Lin, Y. and S. A. Barnett (2008). “La0.9Sr0.1Ga0.8Mg0.2O3-La0.6Sr0.4Co0.2Fe0.8O3
    composite cathodes for intermediate-temperature solid oxide fuel cells.” Solid State
    Ionics 179(11-12): 420-427 (2008).
  132. Kobsiriphat, W. & Barnett, S.A., Ag–Cu–Ti Braze Materials for Sealing SOFCs.
    Journal of Fuel Cell Science and Technology 5(1), 011002-7 (2008).
  133. Pillai, M.R., Bierschenk, D.M. & Barnett, S.A., Electrochemical Partial Oxidation of
    Methane in Solid Oxide Fuel Cells: Effect of Anode Reforming Activity. Catalysis
    Letters 121(1-2), 19-23 (2008).
  134. Haag, J.M., Madsen, B.D., Barnett, S.A. & Poeppelmeier, K.R., Application of
    LaSr2Fe2CrO9- In Solid Oxide Fuel Cell Anodes. Electr. Solid State Letters 11(4), B51-
    B53 (2008).
  135. Madsen, B.D. & Barnett, S.A., La0.8Sr0.2Cr0.98V0.02O3-d–Ce0.9Gd0.1O1.95–Ni Anodes for
    Solid Oxide Fuel Cells. Journal of The Electrochemical Society 154(6), B501-B507
    (2007).
  136. Pillai, M.R., Gostovic, D., Kim, I. & Barnett, S.A., Short-period segmented-in-series
    solid oxide fuel cells on flattened tube supports. Journal of Power Sources 163(2), 960-
    965 (2007).
  137. Madsen, B.D., Kobsiriphat, W., Wang, Y., Marks, L.D. & Barnett, S.A., Nucleation of
    nanometer-scale electrocatalyst particles in solid oxide fuel cell anodes. Journal of Power
    Sources 166(1), 64-67 (2007).
  138. Lai, T.S. & Barnett, S.A., Effect of cathode sheet resistance on segmented-in-series
    SOFC power density. Journal of Power Sources 164(2), 742-745 (2007).
  139. Zhu, H., Colclasure, A.M., Kee, R.J., Lin, Y. & Barnett, S.A., Anode barrier layers for
    tubular solid-oxide fuel cells with hydrocarbon fuel streams. J. Power Sources 161(1),
    413-419 (2006).
  140. Zhan, Z., Lin, Y., Pillai, M., Kim, I. & Barnett, S.A., High-rate electrochemical partial
    oxidation of methane in solid oxide fuel cells. Journal of Power Sources 161(1), 460-465
    (2006).
  141. Yuanbo Lin, Zhongliang Zhan and Scott A. Barnett, “Improving the stability of directmethane
    solid oxide fuel cells using anode barrier layers,” Journal of Power Sources, 158,
    1313-1316 (2006).
  142. Y. Lin and S.A. Barnett, “Co-Firing of Solid Oxide Fuel Cells with Thin
    La0.9Sr0.1Ga0.8Mg0.2O3 Electrolytes” Electrochemical and Solid-State Letters, 9,
    A285-A288 (2006).
  143. James R. Wilson, Worawarit Kobsiriphat, Roberto Mendoza, Hsun-Yi Chen, Jon M.
    Hiller, Dean J. Miller, Katsuyo Thornton, Peter W. Voorhees, Stuart B. Adler, and Scott
    A. Barnett, “Three Dimensional Reconstruction of a Solid Oxide Fuel Cell Anode,”
    Nature Materials, 5, 541-544 (2006).
  144. Zhongliang Zhan and Scott A. Barnett, “Solid Oxide Fuel Cells Operated By Internal
    Partial Oxidation Reforming of iso-Octane,” J. Power Sources, 155, 353-357 (2006).
  145. Zhongliang Zhan and Scott A. Barnett, Operation of ceria-electrolyte solid oxide fuel cells
    on iso-octane–air fuel mixtures, Journal of Power Sources 157, 422-429 (2006).
  146. D.J. Cohen and S.A.Barnett, “Properties of Modulation-Doped ZnO-Based Transparent
    Conducting Oxides,” J. Appl. Phys. 98, 053705 (2005)
  147. Madsen, B.D. Barnett, S.A. “Effect of fuel composition on the performance of ceramicbased
    solid oxide fuel cell anodes,” Solid State Ionics 176, 2545-2553 (2005)
  148. Paul Von Dollen and Scott Barnett “A Study of Screen Printed Yttria-Stabilized Zirconia
    Layers for Solid Oxide Fuel Cells,” Journal of the American Ceramic Society 88, 3361-
    3368 (2005)
  149. Zongping Shao, Sossina M. Haile, Jeongmin Ahn, Paul D. Ronney, Zhongliang Zhan,
    Scott A. Barnett, “A thermally self-sustained micro solid-oxide fuel-cell stack with high
    power density,” Nature 435, 795-798 (2005)
  150. T.S. Lai and S.A. Barnett, Design Considerations For Segmented-In-Series Fuel Cells, J.
    Power Sources, 147 (2005) 85-94.
  151. Z. Zhan and S.A. Barnett, An Iso-Octane Fueled Solid Oxide Fuel Cell, Science 308, 844
    (2005).
  152. Y. Lin, Z. Zhan, J. Liu, and S.A. Barnett, “Direct Operation of Solid Oxide Fuel Cells
    with Methane Fuel,” Solid State Ionics, 176, 1827-1835 (2005).
  153. Z. Zhan and S.A. Barnett, “Use of a Catalyst Layer for Propane Partial Oxidation in Solid
    Oxide Fuel Cells,” Solid State Ionics, 176, 871 (2005).
  154. K. J. Martin, A. Madan, D. Hoffman, J. Ji, S. A. Barnett, “Mechanical Properties and
    Thermal Stability of TiN/TiB2 Nanolayered Thin Films,” J. Vac. Sci. Technol. A23, 90
    (2005).
  155. K.C. Ruthe, D.J. Cohen, and S.A. Barnett, “Low temperature epitaxy of reactive
    sputtered ZnO on sapphire,” J. Vac. Sci. Technol. A22, 2446 (2004).
  156. S.A. Barnett, Anita Madan, “Hardness and stability of metal–nitride nanoscale
    multilayers,” Scripta Materialia 50, 739–744 (2004).
  157. D. J. Cohen, K. C. Ruthe, and S. A. Barnett, “Transparent conducting Zn1-xMgxO:(Al,In)
    thin films, J. Appl. Phys. 96, 459-467 (2004)
  158. Zhongliang Zhan, Jiang Liu, and Scott A. Barnett, Operation of Anode Supported Solid
    Oxide Fuel Cells On Propane-Air Fuel Mixtures, Appl. Catal. A General 262, 255-259
    (2004).
  159. A. Atkinson, S Barnett, R.J. Gorte, J.T.S. Irvine, A.J. McEvoy, M.B. Mogensen, S
    Singhal, J. Vohs, “Advanced Anodes for High Temperature Fuel Cells,” Nature
    Materials, 3, 17-27 (2004).
  160. T.S. Lai, J. Liu, and S.A. Barnett, “Effect of cell width on segmented-in-series solid
    oxide fuel cells,” Electrochem. Solid State Lett. 7, A78-A81 (2004).
  161. B. M. Ennis, A. Madan, W. S. Slaughter, S. A. Barnett, S. X. Mao, Super hardening and
    deformability in epitaxially grown W/NbN nanolayers under shallow and deep
    nanoindentation, Journal of Applied Physics 94, 6892 (2003).
  162. Sambasivan S, Kim I, Barnett S, Zurbuchen MA, Ji J, Kang BW, Goyal A, Barnes PN,
    Oberly CE, J. Materials Research 18, 919-928 (2003).
  163. K.C. Ruthe and S.A. Barnett, “Glancing-angle ion-assisted deposition of ZnO thin films,
    Surface Science Letters 538, L460-L464 (2003).
  164. Scott A. Barnett, Anita Madan, Ilwon Kim, and Keith Martin, “Stability of Nanometer-
    Thick Layers in Hard Coatings,” MRS Bulletin, 28, 169 (2003).
  165. Jiang Liu, Scott A. Barnett, “Operation of anode supported solid oxide fuel cells on
    methane and natural gas,” Solid State Ionics, 158, 11 (2003).
  166. Jiang Liu, Scott A. Barnett, “Thin YSZ Electrolyte Solid Oxide Fuel Cells By Centrifugal
    Casting,” J. Am. Ceram. Soc. 85, 3096-3098 (2002).
  167. Quan Li, I. W. Kim, S. A. Barnett and L. D. Marks, “Structure of AlN/VN Superlattices
    with different AlN layer thicknesses,” J. Mater. Res. 17, 1225 (2002).
  168. Jiang Liu, Brian D. Madsen, John Ji, and Scott A. Barnett, “A Fuel-Flexible Ceramic-
    Based Anode for Solid Oxide Fuel Cells,” Electrochem.Solid State Lett. 5, A122 (2002).
  169. K.C. Ruthe, P.M. DeLuca, and S.A. Barnett, “Specular ion current measurements as a
    quantitative real-time probe of GaAs(001) epitaxial growth,” J. Vac. Sci. Technol. B 20,
    984 (2002).
  170. E.P. Murray, M.J. Sever, and S.A. Barnett, “Electrochemical Performance of
    (La,Sr)(Co,Fe)O3 (Ce,Gd)O3 Composite Cathodes,” Solid State Ionics, 148, 27 (2002).
  171. Erica Perry Murray and Scott Barnett, “(La,Sr)MnO3 – (Ce,Gd)O2-x Composite Cathodes
    for Solid Oxide Fuel Cells,” Solid State Ionics, 143, 265 (2001).
  172. Ilwon Kim, Anita Madan, Murat Guruz, Vinayak Dravid, and Scott Barnett.
    “Stabilization of Zincblende Cubic AlN in AlN/W Superlattices”, J. Vac. Sci. Technol.
    A19, 2069 (2001).
  173. A. Madan and S. A. Barnett, A. Misra, H. Kung, and M. Nastasi, Structure, Stability, and
    Mechanical Properties of Epitaxial W/NbN Superlattices, J. Vac. Sci. Technol A 19, 952
    (2001).
  174. I.W. Kim, Quan Li, L.D. Marks, and S.A. Barnett. “Critical Thickness for
    Transformation of Epitaxially Stabilized Cubic AlN in Superlattices,” Appl. Phys. Lett.
    78, 892 (2001).
  175. P. M. DeLuca, K.C. Ruthe, and S. A. Barnett, “Glancing-Angle Ion Enhanced Surface
    Diffusion on GaAs(001) During Molecular Beam Epitaxy,” Phys. Rev. Lett. 86, 260
    (2001).
  176. M.R. Pillai, S.S. Kim, S.T. Ho, and S.A. Barnett, “Growth of InxGa1-xAs/GaAs
    heterostructures using Bi as a surfactant”, J. Vac. Sci. Technol. B 18, 1232 (2000).
  177. J.E. Guyer, S.A. Barnett, and P.W. Voorhees, “Morphological evolution of
    In0.26Ga0.74As grown under compression on GaAs(001) and under tension on
    InP(001),” J. Crystal Growth 217, 1 (2000).
  178. M.R. Pillai, S.C. Theiring, B.W. Wessels, S.A. Barnett, A. Desikan, and E.P. Kvam,
    “Effect of Sb pre-deposition on the compositional profiles in MOVPE-grown
    InAsSb/InAs (111) multi-quantum wells”, J. Crystal Growth 208, 79 (2000).
  179. C. Engstrom, A. Madan, S.A. Barnett, J. Birch, M. Nastasi, and L. Hultman, “High-
    Temperature Stability of Epitaxial, Non-isostructural Mo/NbN Superlattices”, J.
    Materials Research 15, 554 (2000).
  180. P. Yashar, L. Hultman, W.D. Sproul, and S.A. Barnett, “Deposition and mechanical
    properties of polycrystalline Y2O3/ZrO2 superlattices”, J. Materials Research 14, 3614
    (1999).
  181. D. Kaufman, P.M. DeLuca, and T.Tsai, “High-rate deposition of biaxially-textured yttriastabilized
    zirconia by dual magnetron oblique sputtering”, J. Vac. Sci. Technol A, 17
    2826-2829 (1999).
  182. T.-L. Lee, M. Pillai, J.C. Woicik, G. Labanda, S.A. Barnett, P.F. Lyman, and M.J.
    Bedzyk, “Atomic-resolution study of lattice distortions of buried InGaAs monolayers in
    Gaas(001)”, Phys. Rev. B., Vol. 60 (19) (1999).
  183. E.P. Murray, T. Tsai, and S.A. Barnett, “A Direct-Methane Solid Oxide Fuel Cell with
    Ceria-Based Anode, Nature 400, 649 (1999).
  184. B.M. Clemens, H. Kung, and S.A. Barnett, “Structure and Strength of Multilayers,”
    Materials Research Society Bulletin, February 1999.
  185. P.M. DeLuca and S.A. Barnett, “An Ion Beam Technique for Real-Time Measurement of
    Two-Dimensional Islands During Epitaxial Growth,” Surface Science Letters 426, L407
    (1999).
  186. P.M. DeLuca, J.G.C. Labanda, and S.A. Barnett, “ An Ion Beam Technique for
    Measuring Surface Diffusion Coefficients,” Appl. Phys. Lett. 74, 1719 (1999).
  187. X. Chu, M.S. Wong, W.D. Sproul, and S.A. Barnett, “Deposition, Structure, and
    Hardness of Polycrystalline Transition-Metal Nitride Superlattice Films,” J. Materials
    Res., 14, 2500 (1999).
  188. P. Yashar and S.A. Barnett, J. Rechner and W.D. Sproul “Synthesis and Properties of
    Polycrystalline CrN/TiN Superlattices”, J. Vac. Sci. Technol. A18, 2913 (1998).
  189. A. Madan, Y.Y. Wang, S.A. Barnett, C. Engstrom, H. Ljungcrantz, L. Hultman, and M.
    Grimsditch, “Enhanced Mechanical Hardness in Epitaxial Non-Isostructural Mo/NbN and
    W/NbN Superlattices”, J. Appl. Phys. 84, 776 (1998).
  190. E.P. Murray, T. Tsai, and S.A. Barnett “Oxygen Transfer Processes in
    (La,Sr)MnO3/Y2O3-Stabilized ZrO2 Cathodes: An Impedance Spectroscopy Study”, Solid
    State Ionics 110 235-43 (1998).
  191. T. Tsai and S. A. Barnett, “Effect of Mixed-Conducting Interfacial Layers on Solid Oxide
    Fuel Cell Anode Performance”, J. Electrochemical Society, 145(5) 1696 (1998).
  192. A. Madan and S.A. Barnett, “Superhard Superlattices”, Physics World, 11 45 (1998).
  193. P. Yashar, M. R. Pillai, J. Mirecki-Millunchick, and S. A. Barnett, “X-ray diffraction
    measurement of segregation-induced interface broadening in InGaAs/GaAs
    superlattices”, J. Appl. Phys. 83 2010 (1998).
  194. P. Yashar, X. Chu, J. Rechner, Y. Y. Wang, M. S. Wong, W. D. Sproul, and S. A.
    Barnett, “Stabilization of Cubic CrN0.6 in CrN0.6/TiN superlattices”, Appl. Phys. Lett. 72,
    987 (1998).
  195. J.G.C. Labanda, L. Hultman, and S.A. Barnett, “Damage-free cleaning of Si(001) using
    glancing-angle ion bombardment,” J. Vac. Sci. Technol B16, 1885 (1998).
  196. S. C. Theiring, M. R. Pillai, B. W. Wessels, and S. A. Barnett, “Structure and Interfacial
    Stability of (111)-oriented InAsSb/InAs Strained-Layer Multi-Quantum Well Structures”,
    J. Vac. Sci. Tech. B 15, 2026 (1997).
  197. J.G.C. Labanda and S.A. Barnett, “Glancing-angle ion bombardment for modification
    and monitoring of semiconductor surfaces”, J. Electronic Materials, 26 1030 (1997).
  198. P. Yashar, J. Rechner, M. S. Wong, and W. D. Sproul, S. A. Barnett, “High-rate reactive
    sputtering of yttria-stabilized zirconia using pulsed d.c. power”, Surface & Coatings
    Technology, 94-95 333 (1997).
  199. A. Madan, P. Yashar, S.A. Barnett, and M. Shinn, “An X-ray Diffraction Study of
    Epitaxial NbN/TiN Superlattices,” Thin Solid Films, 302 147 (1997).
  200. J.G.C. Labanda and S.A. Barnett, “In-situ Monitoring of Molecular Beam Epitaxy Using
    Specularly Scattered Ion Beam Current Oscillations”, Appl. Phys. Lett., 70 2843 (1997).
  201. T. Tsai and S. A. Barnett, “Increased Solid-Oxide Fuel Cell Power Density Using
    Interfacial Ceria Layers,” Solid State Ionics 98, 191 (1997).
  202. J.G.C. Labanda and S.A. Barnett, “Ion-scattering spectroscopy during InGaAs molcular
    beam epitaxy: reduction of sputtering using glancing-angle Ar ions” J. Vac. Sci.
    Technol., A15 825 (1997).
  203. X. Chu, M.S. Wong, W.D. Sproul, and S.A. Barnett, “Reactive magnetron sputter
    deposition of polycrystalline vanadium nitride films,” J. Vac. Sci. Technol. A14, 3124
    (1996).
  204. T. Tsai, E. Perry, and S.A. Barnett, “Low-Temperature Solid-Oxide Fuel Cells Utilizing
    Thin Bi-Layer Electrolytes” J. Electrochem. Soc., 144 L130 (1997).
  205. A. Madan, I. Kim, S. C. Cheng, P. Yashar, V. P. Dravid, and S. A. Barnett, “Stabilization
    of cubic AlN in epitaxial AlN/TiN superlattices,” Phys. Rev. Lett. 78, 1743 (1997).
  206. T. Tsai and S.A. Barnett, “Effect of LSM-YSZ cathode on thin-electrolyte solid oxide
    cell performance,” Solid State Ionics, 93 207 (1997).
  207. M. S. Wong, W. J. Chia, P. Yashar, J. M. Schneider, W. D. Sproul, S. A. Barnett, “Highrate
    reactive d.c. magnetron sputtering of Zr0x coatings,” Surface Coatings & Technology
    86-87, 381(1997).
  208. J.G.C. Labanda and S.A. Barnett, “A Novel Tilt Assembly for Ultra-High Vacuum XYZRotary
    Manipulators,” J. Vac. Sci. Technol., A 14 485 (1996).
  209. A. Madan, X. Chu, and S.A. Barnett, “Growth and Characterization of Epitaxial Mo/NbN
    Superlattices,” Appl. Phys. Lett. 68 (16), 2198 (1996).
  210. T. Tsai and S.A. Barnett, “Bias Sputter Deposition of Dense Yttria-Stabilized
    Zirconia Films on Porous Substrates,” J. Electrochem. Soc., 142, 3084 (1995).
  211. J.G.C. Labanda, S.A. Barnett, and L. Hultman, “Effects of Glancing-Angle Ion
    Bombardment on GaAs(001)” J. Vac. Sci. Technol. B13 (6), 2260 (1995).
  212. J.G.C. Labanda, S.A. Barnett, and L. Hultman, “Sputter Cleaning and Smoothening of
    GaAs(001) Using Glancing-Angle Ion Bombardment,” Appl. Phys. Lett. 66, 3114 (1995).
  213. T. Tsai and S.A. Barnett, “Sputter Deposition of Cermet Fuel Electrodes for Solid Oxide
    Fuel Cells,” J. Vac. Sci. Technol. A13, 1073 (1995).
  214. X. Chu and S.A. Barnett, “Model of Superlattice Yield Stress and Hardness
    Enhancements”, J. Appl. Phys. 77, 4403 (1995).
  215. R. Kaspi, S.A. Barnett, L. Hultman, “Growth of InGaAsSb Layers in the Miscibility Gap:
    Use of Very-Low-Energy Ion-Irradiation to Reduce Alloy Decomposition,” J. Vac. Sci.
    Technol. B13, 978 (1995).
  216. L.S. Wang and S.A. Barnett, “Ag-Perovskite Cermets for Thin Film Solid Oxide Fuel
    Cell Air-Electrode Applications,” Solid State Ionics 76, 103 (1995).
  217. J. Mirecki-Millunchick, L. Hultman, and S.A. Barnett, “Effect of 20-95 eV Ar Ion
    Bombardment of GaAs(001): In Pursuit of Damage-Free Ion-Assisted Growth and
    Etching, J. Vac. Sci. Technol. B13, 1155 (1995).
  218. J. Mirecki-Millunchick and S.A. Barnett, “Suppression of Strain Relaxation and
    Roughening of InGaAs on GaAs Using Ion-Assisted Molecular Beam Epitaxy,” Appl.
    Phys. Lett.65, 1136 (1994).
  219. S.A. Barnett and M. Shinn, “Plastic and Elastic Properties of Compositionally-Modulated
    Thin Films,” Annu. Rev. Mater. Sci. 24, 481 (1994).
  220. P.B. Mirkarimi, S.A. Barnett, K.M. Hubbard, T.F. Jervis, and L. Hultman, “Structure and
    Mechanical Properties of Epitaxial TiN/V0.3Nb0.7N(100) Superlattices,” J. Mater. Res. 9,
    1456 (1994).
  221. L. Hultman, M. Shinn, P.B. Mirkarimi, and S.A. Barnett, “Characterization of Misfit
    Dislocations in Epitaxial (001)-Oriented TiN, NbN, VN, and (Ti,Nb)N Film
    Heterostructures By Transmission Electron Microscopy,” J. Crystal Growth 135, 309
    (1994).
  222. C.-H. Choi and S.A. Barnett, “Morphology and Crystalline Perfection of InAs Films on
    Si(100),” J. Cryst. Growth 137, 381 (1994).
  223. M. Shinn and S.A. Barnett, “Effect of Superlattice Layer Elastic Moduli on Hardness,”
    Appl. Phys. Lett. 64, 61 (1994).
  224. X. Chu, S.A. Barnett, M.S. Wong, and W.D. Sproul, “Mechanical Properties and
    Microstructures of Polycrystallline Ceramic/Metal Superlattices: TiN/Ni and TiN/NiCr,”
    Surf. Coatings Technol 61, 251 (1993).
  225. J.O. Kim, J.D. Achenbach, P.B. Mirkarimi, and S.A. Barnett, “Acoustic-Microscopy
    Measurements of the Elastic Properties of TiN/(VxNb1-xN)Superlattices,” Phys. Rev. B
    48, 1726 (1993).
  226. M.S. Wong, W.D. Sproul, X. Chu, and S.A. Barnett, “Reactive Magnetron Sputter
    Deposition of Niobium Nitride Films,” J. Vac. Sci. Technol A 11, 1528 (1993).
  227. L.S. Wang and S.A. Barnett, “Sputter-Deposited Medium-Temperature Solid-Oxide Fuel
    Cells With Multi-Layer Electrolytes,” Solid State Ionics 61, 273 (1993).
  228. C.-H. Choi, L. Hultman, and S.A. Barnett, “Elimination of Planar Faults in Lattice-
    Matched Heteroepitaxial Films Using Ion-Assisted Molecular Beam Epitaxy,” J. Vac.
    Sci. Technol., 11, 1 (1993).
  229. M. Shinn, P.B. Mirkarimi, and S.A. Barnett, “Nucleation of Lattice-Mismatched
    Transition-Metal Nitride Films: Limitations on Superlattice Growth,” Surface Science,
    281, 1 (1993).
  230. C.-H. Choi, R. Ai, and S.A. Barnett, “Ion-Assisted Molecular Beam Epitaxy of GaAs on
    Si(100),” J. Electronic Materials, 21, 1041 (1992).
  231. L.S. Wang and S.A. Barnett, “Lowering the Air-Electrode Interfacial Resistance in
    Medium-Temperature Solid Oxide Fuel Cells,” J. Electrochem. Soc., 139, L89 (1992).
  232. X. Chu, M.S. Wong, W.D. Sproul, and S.A. Barnett, “Reactive Unbalanced Magnetron
    Sputter Deposition of Polycrystalline TiN/NbN Superlattice Coatings,” Surf. Coating
    Technol. 57, 13 (1993).
  233. L.S. Wang and S.A. Barnett, “Deposition and Properties of Yttria-Stabilized Bismuth
    Oxide Thin Films Using Reactive Direct Current Magnetron Co-Sputtering,” J.
    Electrochem. Soc., 139, 2567 (1992).
  234. J.O. Kim, J.D. Achenbach, P.B. Mirkarimi, M. Shinn, and S.A. Barnett, “Elastic
    Constants of Single-Crystal Superlattice Films Determined by Line-Focus Acoustic
    Microscopy,” J. Appl. Phys. 72, 1805 (1992).
  235. L.S. Wang and S.A. Barnett, “Sputter Deposition of Yttria-Stabilized Zirconia and Silver
    Cermet Electrodes for SOFC Applications,” Solid State Ionics 52, 261 (1992).
  236. X. Chu, M.S. Wong, W.D. Sproul, S.L. Rohde, and S.A. Barnett, “Deposition and
    Properties of Polycrystalline TiN/NbN Superlattice Coatings,” J. Vac. Sci. Technol. A10,
    1604 (1992).
  237. L. Hultman, L.R. Wallenberg, M. Shinn, and S.A. Barnett, “Formation of Polyhedral
    Voids at Surface Cusps During Growth of Epitaxial TiN/NbN Superlattice and Alloy
    Films,” J. Vac. Sci. Technol. A10, 1618 (1992).
  238. J.O. Kim, J.D. Achenbach, M. Shinn, S.A. Barnett, “Effective Elastic Constants and
    Acoustic Properties of Single-Crystal TiN/NbN Superlattices,” J. Mater. Res. 7, (1992).
  239. P.B. Mirkarimi, M. Shinn, S.A. Barnett, S. Kumar, and M. Grimsditch, “Elastic
    Properties of TiN/(VxNb1-x)N Superlattices Measured By Brillouin Scattering,” J. Appl.
    Phys. 71, 4955 (1992).
  240. L.S. Wang and S.A. Barnett, “Deposition, Structure, and Properties of Cermet Thin Films
    Composed of Ag and Y-Stabilized Zirconia,” J. Electrochem. Soc. 139, 1134 (1992).
  241. M. Shinn, L. Hultman, and S.A. Barnett, “Growth, Structure, and Microhardness of
    Epitaxial TiN/NbN Superlattices,” J. Mater. Research 7, 901 (1992).
  242. P.B. Mirkarimi, M. Shinn, and S.A. Barnett, “An Ultrahigh Vacuum, Magnetron
    Sputtering System for the Growth and Analysis of Nitride Superlattices,” J. Vac. Sci.
    Technol. A 10, 75 (1992).
  243. L. Rivaud, S.A. Barnett, J.E. Greene, and E.T. Marciniec, “Structure and Properties of
    Polycrystalline Hexagonal Ta2N Films Deposited by Reactive Sputtering,” J. Vac. Sci.
    Technol. A9, 2180 (1991).
  244. E.S. Thiele, L.S. Wang, T.O. Mason, and S.A. Barnett, “Deposition and Properties of
    Yttria-Stabilized Zirconia Thin Films Using Reactive D.C. Magnetron Sputtering,” J.
    Vac. Sci. Technol. A. 9, 3054 (1991).
  245. C.-H. Choi, R. Ai, and S.A. Barnett, “Suppression of Three-Dimensional Island
    Nucleation During GaAs Growth on Si(100),” Phys. Rev. Lett. 67, 2826 (1991).
  246. R. Kaspi and S.A. Barnett, “Low-Energy Ion-Assisted Epitaxy of InGaAsSb on
    InP(100),” J. Appl. Phys. 69, (1991).
  247. C.-H. Choi, L. Hultman, W.-A. Chiou, and S.A. Barnett, “Growth of Epitaxial TiN Thin
    Films on Si(100) By Reactive Magnetron Sputtering,” J. Vac. Sci. Technol. B9, 221
    (1991).
  248. R. Kaspi and S.A. Barnett, “Analysis of GaAs(001) Surface Stoichiometry Using Monte
    Carlo Simulations,” Surf. Sci., 241, 146 (1991).
  249. C.-H. Choi, L. Hultman, and S.A. Barnett, “Effect of Nucleation Mechanism on Planar
    Defects in InAs on Si(100),” Appl. Phys. Lett., 57, 2931 (1990).
  250. P. Mirkarimi, L. Hultman, and S.A. Barnett, “Enhanced Hardness in Lattice-Matched
    Single-Crystal TiN/V0.6Nb0.4N Superlattices, Appl. Phys. Lett., 57, 2654 (1990).
  251. S.L. Rohde, I. Petrov, W.D. Sproul, S.A. Barnett, P.J. Rudnik, and M.E. Graham,
    “Effects of an Unbalanced Magnetron in a Unique Dual Cathode, High Rate Reactive
    Sputtering System,” Surf. Coating Technol. (1990).
  252. S.A. Barnett, “A New Solid Oxide Fuel Cell Design Based on Thin Film Electrolytes,”
    Energy 15, 1 (1990).
  253. C.-H. Choi, L. Hultman, and S.A. Barnett, “Ion-Irradiation-Induced Suppression of
    Three-Dimensional Island Formation During InAs Growth on Si(100),” J. Vac. Sci.
    Technol. A8, 1587 (1990).
  254. C.-H. Choi and S.A. Barnett, “Nucleation and Epitaxial Growth of InAs on Si(100) by
    Ion-Assisted Deposition,” Appl. Phys. Lett. 55, 2319 (1989).
  255. W.-X. Ni, J. Knall, M.A. Hasan, G.V. Hansson, J.-E. Sundgren, S.A. Barnett, L.C.
    Markert, and J.E. Greene, “Kinetics of Dopant Incorporation Using an Antimony
    Low-Energy Ion Beam during Growth of Si(100) Films by Molecular Beam Epitaxy,”
    Phys. Rev. B40, 10449 (1989).
  256. S.A. Barnett, J.E. Greene, and J.-E. Sundgren, “Ion-Beam Doping During Molecular
    Beam Epitaxy,” J. Metals 41, 16 (1989).
  257. J. Knall, S.A. Barnett, J.-E. Sundgren, and J.E. Greene, “Adsorption and Desorption
    Kinetics of In on Si(100),” Surf. Sci. 209, 314 (1989).
  258. M.A. Ray, S.A. Barnett, and J.E. Greene, “A Multiaperture Ion Source With Adjustable
    Optics to Provide Well-Collimated, High-Current-Density, Low-to- Medium-Energy Ion
    Beams,” J. Vac. Sci. Technol. A7, 125 (1989).
  259. R. Kaspi and S.A. Barnett, “Monte Carlo Simulations of Phase Separation During
    Growth of Semiconductor Alloys,” J. Vac. Sci. Technol. A7, 1366 (1989).
  260. S. Rohde, S.A. Barnett, and C.-H. Choi, “An Ultra-High Vacuum, Low-Energy-
    Ion-Assisted Deposition System for III-V Semiconductor Film Growth,” J. Vac. Sci.
    Technol. A7, 2273 (1989).
  261. M.A. Hasan, J. Knall, S.A. Barnett, J.-E. Sundgren, L.C. Markert, A. Rockett, and J.E.
    Greene, “Incorporation of Accelerated Low-Energy (50-500 eV) In Ions in Si(100) Films
    During Growth by Molecular Beam Epitaxy,” J. Appl. Phys. 65, 172 (1989).
  262. S.A. Barnett, A. Rockett, and R. Kaspi, “Monte Carlo Simulations of Molecular Beam
    Epitaxy on Si(001) Surfaces,” J. Electrochem. Soc., 136, 1132 (1989).
  263. L. Hultman, S.A. Barnett, J.-E. Sundgren, and J.E. Greene, “Growth of Epitaxial TiN
    Films Deposited on MgO(100) by Reactive Magnetron Sputtering: The Role of
    Low-Energy Ion Irradiation During Deposition,” J. Cryst. Growth 92, 639 (1988).
  264. S.A. Barnett, L. Hultman, J.-E. Sundgren, F. Ronin, and S. Rohde, “Epitaxial Growth of
    ZrN on Si(100),” Appl. Phys. Lett., 53, 400 (1988).
  265. S.A. Barnett and A. Rockett, “Monte Carlo Simulations of Si(001) Growth and
    Reconstruction During Molecular Beam Epitaxy,” Surf. Sci. 198, 133 (1988).
  266. M.-A. Hasan, J. Knall, S.A. Barnett, A. Rockett, J.-E. Sundgren, and J.E. Greene, “A
    Low-Energy Metal-Ion Source for Primary-Ion Deposition and Accelerated-Ion Doping
    During Molecular Beam Epitaxy,” J. Vac. Sci. Technol. B 5, 1332 (1987).
  267. S.A. Barnett, “Direct Eo Energy Gaps of Bismuth-Containing III/V Alloys Predicted
    Using Quantum Dielectric Theory,” J. Vac. Sci. Technol. A 5, 2845 (1987).
  268. J. E. Greene, T. Motooka, J.-E. Sundgren, D. Lubben, S. Gorbatkin, and S. A. Barnett,
    “The Role of Ion/Surface Interactions and Photo-Induced Reactions During Film Growth
    from the Vapor Phase,” Nucl. Instr. Methods Phys. Res. B27, 226 (1987).
  269. U. Helmersson, S. Todorova, L. Markert, S. A. Barnett, J.-E. Sundgren, and J. E. Greene,
    “Growth of Single-Crystal TiN/VN Strained-Layer Superlattices With Extremely High
    Mechanical Hardness,” J. Appl. Phys. 62, 481 (1987).
  270. M.-A. Hasan, S. A. Barnett, J.-E. Sundgren, and J. E. Greene, “Nucleation and Initial
    Growth of In Deposited on Si3N4 Using Low-Energy ( < 300 eV) Accelerated Beams in
    Ultra-High Vacuum,” J. Vac. Sci. Technol. A 5, 1883 (1987).
  271. L. Hultman, U. Helmersson, S. A. Barnett, J.-E. Sundgren, and J. E. Greene,
    “Low-Energy Ion Irradiation During Film Growth for Reducing Defect Densities in
    Epitaxial TiN(100) Films Deposited by Reactive Magnetron Sputtering,” J. Appl. Phys.
    61, 552 (1987).
  272. S. A. Barnett, H. F. Winters, and J. E. Greene, “Influence of Ion Bombardment on the
    Interaction of Sb with the Si(100) Surface,” Surface Sci. 181, 596 (1987).
  273. J. E. Greene, T. Motooka, J.-E. Sundgren, A. Rockett, S. Gorbatkin, D. Lubben, and S. A.
    Barnett, “A Review of the Present Understanding of the Role of Ion/Surface Interactions
    and Photo-Induced Reactions During Vapor Phase Crystal Growth,” J. Cryst. Growth, J.
    Cryst. Growth 79, 19 (1986).
  274. L. Romano, J.-E. Sundgren, S. A. Barnett, and J. E. Greene, “Metastable
    (GaSb)1-x(Sn2)x Alloys: Crystal Growth and Phase Stability of Single Crystal and
    Polycrystalline Layers,” Superlattices and Microstructures, 2, 233 (l986).
  275. T. C. McGlinn, T. N. Krabach, M. V. Klein, G. Bajor, J. E. Greene, B. Kramer, S. A.
    Barnett, A. Lastras, and S. Gorbatkin, “Raman Scattering and Optical Absorption Studies
    of the Metastable Alloy System GaAsSb,” Phys. Rev. B 33, 8396 (1986).
  276. A. Rockett, J. Klem, S. A. Barnett, J. E. Greene, and H. Morkoc, “Si Incorporation
    Probabilities and Depth Distributions in GaAlAs Films Grown by Molecular Beam
    Epitaxy,” J. Appl. Phys. 59, 2777 (1986).
  277. A. Rockett, J. Klem, S. A. Barnett, J. E. Greene, and H. Morkoc, “Si Incorporation and
    Segregation in GaAlAs(100) Films Grown by Molecular Beam Epitaxy,” J. Vac. Sci.
    Technol. B4, 519 (1986).
  278. S. I. Shah, B. Kramer, S. A. Barnett, J. E. Greene, “Direct Evidence for an
    Order/Disorder Phase Transition at x = 0.3 in Single Crystal Metastable (GaSb)Ge
    Alloys: High Resolution X-ray Diffraction Measurements,” J. Appl. Phys. 59, 1482
    (1986).
  279. S. A. Barnett, H. F. Winters, and J. E. Greene, “The Interaction of Sb4 Molecular Beams
    with Si(100) Surfaces: Modulated-Beam Mass Spectrometry and Thermally Stimulated
    Desorption Studies,” Surf. Sci., 165, 303 (1986).
  280. D. Lubben, S. A. Barnett, K. Suzuki, S. Gorbatkin, and J. E. Greene, “Laser- Induced
    Plasmas for Primary Ion Deposition of Epitaxial Ge and Si Films,” J. Vac. Sci. Technol.,
    B3, 968 (1985).
  281. A. Rockett, S. A. Barnett, J. E. Greene, J. Knall, and J.-E. Sundgren, “Dopant Depth
    Distributions as a Function of Growth Temperature in In-Doped (100) Si Grown by
    Molecular Beam Epitaxy,” J. Vac. Sci. Technol., A3, 855 (1985).
  282. B. O. Johansson, J.-E. Sundgren, J. E. Greene, A. Rockett, and S. A. Barnett, “Growth
    and Physical Properties of Single Crystal TiN Films Deposited by Reactive Magnetron
    Sputtering,” J. Vac. Sci. Technol., A3, 303 (1985).
  283. J. E. Greene, S. A. Barnett, A. Rockett, and G. Bajor, “Modeling of Dopant
    Incorporation, Segregation, and Ion-Surface Interaction Effects During Semiconductor
    Film Growth by Molecular Beam Epitaxy and Plasma-Based Techniques,” Appl. Surface
    Sci., 22/23, 520 (1985).
  284. S. A. Barnett and J. E. Greene, “Si Molecular Beam Epitaxy: A Model for
    Temperature-Dependent Incorporation Probabilities and Depth Distributions in Dopants
    Exhibiting Strong Surface Segregation,” Surf. Sci., 151, 67 (1985).
  285. A. Rockett, S. A. Barnett, and J. E. Greene, “A Low-Energy, Ultra-High Vacuum,
    Solid-Metal Ion Source for Accelerated-Ion Doping During Molecular Beam Epitaxy,” J.
    Vac. Sci. Technol., B2, 306 (1985).
  286. J. Knall, J. E. Sundgren, J. E. Greene, A. Rockett, and S. A. Barnett, “Indium
    Incorporation During the Growth of (100) Si by Molecular Beam Epitaxy: Surface
    Segregation and Reconstruction,” Appl. Phys. Lett., 45, 689 (1984).
  287. K. E. Newman, A. Lastras-Martinez, B. Kramer, S. A. Barnett, M. A. Ray, J. D. Dow, J.
    E. Greene, and P. M. Raccah, “Optical Absorption in Single-Crystal Metastable
    (GaAs)1-x(Ge2)x Alloys: Evidence for a Zinc-Blende-Diamond Order- Disorder
    Transition,” Phys. Rev. Letters 50, 1466 (1983).
  288. S. A. Barnett and J. E. Greene, “Mechanisms of Epitaxial GaAs Crystal Growth by
    Sputter Deposition: Role of Ion/Surface Interactions,” Surface Science, 128, 401 (1983).
  289. J. E. Greene and S. A. Barnett, “A Critical Review of Ion-surface Interactions During
    Vapor Phase Crystal Growth by Sputtering, MBE, and Plasma- Enhanced CVD:
    Applications to Semiconductors,” J. Vac. Sci. Technol. 21, 285 (1982).
  290. S. A. Barnett, M. A. Ray, A. Lastras, B. Kramer, J. E. Greene, P. M. Raccah, and L. L.
    Abels, “Growth and Optical Properties of Single Crystal Metastable (GaAs)1-xGex
    Alloys,” Electronics Letters, 18, 891 (1982).
  291. J. E. Greene, S. A. Barnett, K. C. Cadien, and M. A. Ray, “Growth of Single Crystal
    GaAs and Metastable (GaSb)1-xGex Alloys by Sputter Deposition: Ion- Surface
    Interaction Effects,” J. Crystal Growth 56, 389 (1982).
  292. L. C. Witkowski, T. J. Drummond, S. A. Barnett, H. Morkoc, A. Y. Cho, and J. E.
    Greene, “Properties of High Mobility GaAs/Ga1-xAlxAs Single Period Modulation
    Doped Heterojunctions,” Electronics Lett. 17, 126 (1981).
  293. S. A. Barnett, G. Bajor, and J. E. Greene, “Growth of High Quality Epitaxial GaAs Films
    by Sputter Deposition,” Appl. Phys. Letters 37, 734 (1980).
  294. J. L. Zilko, S. A. Barnett, A. H. Eltoukhy, and J. E. Greene, “Modification of Elemental
    Incorporation Probabilities by Ion Bombardment During Growth of III-V Compounds
    and Metastable Films,” J. Vac. Sci. Tech. 14, 595 (1980).
  295. G. Bajor, S. A. Barnett, R. E. Klinger, and J. E. Greene, “Determination of
    Concentrations and Ionization Energies of Imperfections in Degenerate InSb Films,” Thin
    Solid Films 59, 183 (1979).
  296. A.H. Eltoukhy, S.A. Barnett, and J.E. Greene, “Ion Bombardment Effects on Elemental
    Incorporation Probabilities During Sputter Deposition of GaSb and InSb,” J. Vac. Sci.
    Technol. 16, 321 (1979).

Presentations

2024

  1. (invited)  Scott A. Barnett and Jerren Grimes,  Measurements and Modeling of Pressure Effects on Solid Oxide Cell Performance, International Conference on Advanced Composites and Ceramics (ICACC), Daytona Beach, January, 2024.
  2. Scott A. Barnett and Travis Schmauss, Viability of Solid Oxide Fuel Cell Vehicles With On-Board CO2 Capture, International Conference on Advanced Composites and Ceramics (ICACC), Daytona Beach, January, 2024.

 2023

  1.  (invited) Scott A. Barnett, “Materials Stability In Anode-Supported Solid Oxide Cells,” 244th Electrochemical Society Symposium, Gothenburg Sweden, October 2023.
  2. Saahir Ganti-Agrawal, Dalton Cox, and Scott Barnett, “Improving Solid Oxide Cell Performance through Laser-Ablated Electrode Supports,” 243rd Electrochemical Society Symposium and Solid Oxide Fuel Cells 18 (SOFC-XVIII), Boston, May 2023.
  3. Jakob Reinke and Scott A Barnett, “Phase Stability of SrTi1-xFexO3- δ Under Solid Oxide Cell Fuel-Electrode Conditions: Implications For Related Exsolution Electrode Materials,” 243rd Electrochemical Society Symposium and Solid Oxide Fuel Cells 18 (SOFC-XVIII), Boston, May 2023.
  4. Yubo Zhang, Travis A Schmauss, Samuel A Horlick, Emir Dogdibegovic and Scott A Barnett, “Life Testing and Redox Cycling of Ni- and Ru-Doped Strontium Iron Titanate Exsolution Fuel Electrodes In Electrolyte-Supported Solid Oxide Cells,” 243rd Electrochemical Society Symposium and Solid Oxide Fuel Cells 18 (SOFC-XVIII), Boston, May 2023.
  5. Dalton Cox and Scott A Barnett, “Microstructural Changes in Ni-YSZ Electrodes Operated in Fuel Cell and Electrolysis Modes: Effect of Gas Diffusion Limitations,” 243rd Electrochemical Society Symposium and Solid Oxide Fuel Cells 18 (SOFC-XVIII), Boston, May 2023.
  6. Jerren Grimes, Yubo Zhang, Dalton Cox, Scott Barnett, “Enhancement of Ni-YSZ fuel electrode performance via pressurization and GDC infiltration,” 243rd Electrochemical Society Symposium and Solid Oxide Fuel Cells 18 (SOFC-XVIII), Boston, May 2023.
  7. (Invited)  Scott A Barnett, “Materials Interfacial Stability In Solid Oxide Cells,” International Conference on Advanced Composites and Ceramics (ICACC), Daytona Beach, January 2023.

 2022

  1.  (Invited, Award Presentation)  Scott A Barnett, Travis Schmauss, Nicholas Geisendorfer, Tenglong Zhu, and Shanlin Zhang, Mechanisms of Oxide Exsolution and Electrode Applications In Solid Oxide Cells, Fall Electrochemical Society Conference, Atlanta, October 2022.
  2. Yubo Zhang, Travis Schmauss, and Scott A Barnett, “Degradation and Reactivation of Ni-Doped Strontium Iron Titanate Solid Oxide Cell Fuel Electrodes,” Fall Electrochemical Society Conference, Atlanta, October 2022.
  3. (Keynote) S.A. Barnett, Development of Reversible Solid Oxide Cells For Renewable Energy Storage, American Chemical Society 2022 Fall National Meeting, Chicago, August 2022
  4. (Keynote)   Scott Barnett, Qian Zhang, Jerren Grimes, Dalton Cox, Junsung Hong, Beom-Kyeong Park, Tianrang Yang, and Peter Voorhees, Degradation Processes in Solid Oxide Electrolysis Cells, Solid State Ionics Conference, Boston, July 2022
  5. Travis A Schmauss, Alessandro Donazzi, Yubo Zhang, Liliana Mogni, and Scott A. Barnett,  Reactivation of Exsolved Ni- and Ru-doped Strontium Iron Titanate Solid Oxide Fuel Electrodes, Solid State Ionics Conference, Boston, July 2022
  6. Jerren Grimes and S.A. Barnett, Gadolinia doped ceria infiltration into the Ni-(Y2O3)0.08(ZrO2)0.92 fuel electrodes:  Effects on reversible solid oxide cell stability, Solid State Ionics Conference, Boston, July 2022
  7. Qian Zhang, Peter W Voorhees, Scott A Barnett, Modeling of Ni Migration in Ni-YSZ Electrodes During Solid Oxide Electrolysis, European Fuel Cell Conference, Lucerne, July 2022.
  8. (invited)  Scott A Barnett, “High-Efficiency Electrical Energy Storage Using Reversible Solid Oxide Cells,” Politecnico di Milano, June 2022.
  9. (invited) Scott A Barnett, Tenglong Zhu, and Shanlin Zhang, Perovskite Oxide Exsolution Anodes For Solid Oxide Fuel Cells, CIMTEC Ceramics Conference, Perugia, Italy, June 2022
  10. Qian Zhang, Scott A Barnett, and Peter Voorhees, Phase Field Simulation of Ni Migration in Ni-YSZ Electrodes During Solid Oxide Electrolysis,  International Conference on Electrolysis, Golden, CO, June 2022. 
  11. (invited) Scott Barnett, Qian Zhang, Jerren Grimes, Dalton Cox, Junsung Hong, Beom-Kyeong Park, Tianrang Yang, and Peter Voorhees, Degradation Processes in Solid Oxide Cell Ni-YSZ Electrodes, 241st  Electrochemical Society Symposium, Vancouver, May 2022
  12. Dalton Cox and S.A. Barnett, Time-Resolved Characterization of Polarization-Induced Solid Oxide Cell Microstructure Evolution, 241st  Electrochemical Society Symposium, Vancouver, May 2022
  13. (invited)  Scott A Barnett, From Thin Films to Solid Oxide Fuel Cells, ICMCTF Conference, San Diego, May 2022.
  14. (invited) Scott Barnett, Qian Zhang, Jerren Grimes, Dalton Cox, Junsung Hong, Beom-Kyeong Park, Tianrang Yang, and Peter Voorhees, Degradation Processes in Solid Oxide Electrolysis Cells, Idaho National Labs, March, 2022